
On The Robust Construction of Constrained
Delaunay Tetrahedralizations

Feng Wang1 and Luca Di Mare2

1 Department of Mechanical Engineering, Imperial College London, UK
feng.wang207@imperial.ac.uk

2 Department of Mechanical Engineering, Imperial College London, UK
l.di.mare@imperial.ac.uk

Summary. We present a simple and robust algorithm to construct the Constrained
Delaunay Tetrahedralization(CDT) for a Piecewise Linear Complex(PLC). The al-
gorithm is based on Si’s CDT [1] algorithm, but we provide a new facet recovery
algorithm, which is simple and easy to implement. The implementation and robust-
ness issues of the CDT algorithm are discussed in detail and the program which
implements the algorithm is tested with several examples. The results are compared
with TetGen [2] and demonstrate the robustness and efficiency of the algorithm.

1 Introduction

One particular problem of Delaunay triangulation is preserving the integrity
of boundaries. In two dimensions, recovering the boundary constraints of a
Delaunay triangulation is successfully solved with no Steiner points and opti-
mal complexity [3]. In three dimensions, the problem is far from solved. This
research note will focus on one of the boundary recovery techniques for Delau-
nay Tetrahedralization, the Constrained Delaunay Tetrahedralization, which
is firstly proposed by Shewchuk [4] and then further developed by Si [1].

In this research note, we discuss the robust implementation of a simple and
efficient CDT algorithm. The algorithm is closely related to Si’s algorithm [1]
but we provide a simple and efficient facet recovery algorithm.

The reminder of this research note is organized as follows. The CDT algo-
rithm is firstly overviewed in the next section. Then the implementation issues
of the algorithm is discussed in detail in Section 3, Section 4 and Section 5.
Finally we present the meshing results for several examples.

2 Overview of The CDT algorithm

The input is a 3D Planar Linear Complex(PLC) X [4]. X consists of a set
of vertices, segments and facets. Each facet of X is represented as a union of



2 Feng Wang and Luca Di Mare

triangular faces or so-called subfaces and each side of a subface here is consid-
ered as a segment. According to Si’s work [1], if D is the DT of X, the vertices
of D are in general position, and D contains all the segments of X, then X
has a unique CDT with no Steiner points. The condition that vertices are in
general position means that there are no five or more vertices on the same
sphere. This condition can be achieved by using symbolic perturbation [4].

If the DT of the input PLC X0 is DT0, DT0 might not respect segments
and facets of X0. Missing segments and facets will be recovered in the following
three steps:

1. Insert Steiner points into DT0 and transform DT0 into DT1, so that all
the segments of X0 appear as themselves or as a union of edges in DT1.
This step is called segment recovery.

2. Insert the Steiner points into X0 and transform X0 into X1. As DT1 is
the DT of X1 and all the segments of X1 appear in DT1, according to
Si [1], the CDT of X1 exists without no Steiner points.

3. Group missing subfaces into missing regions and recover them incremen-
tally. This step needs no Steiner points and is called facet recovery.

3 Segment recovery

The general steps of the segment recovery algorithm is similar to the method
recently proposed by Si [1]. Its robustness and implementation issues will be
discussed in detail below.

Due to round-off errors, a Steiner point Vn might not lie exactly on the
segment ViVj it tries to split.The history tag method [5] would fail to locate
Vn, if such perturbation is ignored, because the success of this method relies
on the principle that if a point lies inside a parent tetrahedron, then the point
must be contained by one of its child tetrahedron. However, the jump and walk
method [6] does not suffer from this problem, because its success relies on the
integrity of DT0. On another hand, since the number of tetrahedra stored
by the history tag method is normally 8-10 times larger than the jump-and-
walk method, this drawback becomes a prohibitive memory cost when a large
surface grid is used. Hence the history tag method is not recommended.

If the missing segment ViVj is on the convex hull of DT0, Vn might be
perturbed outside of the convex hull. Under such conditions, both methods
will fail. A simple solution is to use eight shadow points to form a large cube,
which is big enough to contain the whole PLC.

The efficiency of the segment recovery algorithm are found to be closely
related to the following aspects:

Finding a reference point

A reference point can be found by walking through all the tetrahedra which
intersect the missing segment, then the reference point is randomly selected
from the point set of these tetrahedra [1].



On The Robust Construction of Constrained Delaunay Tetrahedralizations 3

Locating a Steiner point

To locate a Steiner point, the jump-and-walk algorithm can start from a tetra-
hedron which contains a vertex of the missing segment.

Identifying a segment

Identifying a segment is used to keep track of missing segments when Steiner
points are inserted into DT0. If a Steiner point remembers the segment it
has split and each segment remembers its parent segment, and the adjacency
graph of X0 entities is maintained, identifying a segment is trivial to do. If
one of the end point of an edge ViVj is a Steiner point, we can check all the
segments that contains the Steiner point to see if ViVj is a segment, otherwise,
we can easily check it using the adjacency graph of X0.

4 Updating PLC

After segment recovery, the point set of X0 is enriched by Steiner points, and
X0 is transformed into X ′

0. In X ′
0, segments of X0 appear as themselves or as

a union of their child segments in DT1. New subfaces need to be created in
X ′

0 so as to transform X ′
0 into X1, so that DT1 is a DT of X1. Based on Si’s

condition [1], facet recovery of X1 can be undertaken with no Steiner points.
In X0, as segments are sides of subfaces in X0, a union of new subfaces in

X ′
0 are spawned by incrementally inserting Steiner points into each subface

σ0 of X0. As points are always inserted on sides of subfaces, point location
can be done efficiently by letting a Steiner point remember on which side of
σ0 it is inserted on, so only a simple point-on-segment test is needed. This
procedure is found to be very effective to avoid a possible robustness issue.
As a Steiner point might be perturbed off the segment it tries to split, a
naive point-on-segment might fail to tell on which side of σ0 a Steiner point
is located, especially if σ0 is long and thin.

5 Facet recovery

Subfaces in some facets of X1 may be missing in DT1. All missing subfaces
are recovered in this step. A facet is said to be recovered if all its subfaces
appear in X1.

Missing subfaces on the same facet can be grouped into missing regions
if they are generated from the same subface in X0 and at least one of their
neighbors are recovered or generated from a different subface in X0. A subface
in X0 can have several missing regions. Our definition of missing regions is
similar to that of Shewchuk and Si [4, 1]. The primary difference is that only
subfaces that are generated from the same subface, instead of the same facet,
in X0 can form a missing region Ω. Due to this difference, the properties of
our missing regions are also slightly different:



4 Feng Wang and Luca Di Mare

• All subfaces of Ω belong to the same subface in X0

• At lease one of the neighbors of each subface of Ω are either recovered or
generated from a different subface in X0

• The edges on ∂Ω are edges of DT1
• All the internal edges of Ω are missing
• Ω is simply connected.

All subfaces of Ω belong to the same subface in X0, as segment recovery only
insert Steiner points on sides of subfaces in X0, Ω must be simply connected3.
Due to the above properties, identifying missing regions can be done robustly
and the sizes of resulting missing regions are considerably smaller than that
of Shewchuk and Si [4, 1].

A missing region Ω can be categorized into two types: Ω is said to be
M-1 if its interior is not intersected by any edge in DT1, otherwise it is M-2.
According to their types, missing regions can be recovered in different ways.

If Ω is M-1, Ω actually represents a union of faces in DT1 and then is
re-meshed to match faces in DT1. If Ω is M-2, its interior is intersected by
at least one edge in DT1. To recover Ω, tetrahedra in DT1 which intersect Ω
are removed first. Two cavities, C1 and C2, are then derived from removed
tetrahedra and re-meshed separately to force subfaces in Ω to appear. A
modified advancing front method is used to mesh the cavities and it resembles
the gift-wrapping algorithm [4]. Since the size of Ω are small and it is simply
connected, derived cavities can be meshed easily.

It is worth mentioning that as the cavity verification [1] is ignored, recov-
ered subfaces in Ω might not be constrained Delaunay, and a complete proof
of the termination of recovering M-2 missing region is our future work.

6 Experimental Results

The algorithm has been implemented in our program Mauggrt. Its perfor-
mance will be demonstrated by two examples, Statue4 (25386 vertices and
50780 faces) and CORE5 (920270 vertices and 1840540 faces). Their CDTs
are shown in Figure 1.

Table 1 shows the runtime statistics of Mauggrt and its comparison with
Tetgen 6. The comparison shows that Mauggrt presents comparable efficiency
to Tetgen but require slightly more Steiner points. Table 2 shows statistics
of missing regions and cavities in facet recovery. We can see that the sizes of
missing regions and cavities are all relatively small values.

3Otherwise, it means segment recovery inserts Steiner points inside subfaces in
X0 or subfaces in X0 have holes, which obvious will not happen.

4Statue is available from http://www-roc.inria.fr/gamma/download/
5CORE is a piece of structure from a three-shaft aero-engine.
6Tetgen version is 1.4.3. Both program are compiled in a Linux workstation with

the default option of Tetgen, that is -O0 for geometry predicates and -g -Wall for
other .cxx files.



On The Robust Construction of Constrained Delaunay Tetrahedralizations 5

Statue CORE

Fig. 1. CDT of Statue and Core

Table 1. Runtime statistics of Mauggrt and comparison with TetGen.

No. of Steiner point Segment recovery(s) Update PLC(s) Facet recovery(s) Total(s)
Mauggrt Tetgen Mauggrt Tetgen Mauggrt Tetgen Mauggrt Tetgen Mauggrt Tetgen

Statue 4951 3720 0.76 0.86 0.09 N/A 0.55 0.24 1.40 1.10
CORE 385024 3000534 48.85 44.92 4.32 N/A 44.96 38.33 98.13 83.25

Table 2. Statistics of missing regions and cavities in facet recovery

No.of No. of No. of Max. size No. of Max. size Max. size
missing faces missing regions M-1 of M-1 M-2 of M-2 of cavities

Statue 99 98 1 2 97 1 5
Core 145704 74396 608 4 73788 13 40

Acknowledgements

The authors gratefully acknowledge Rolls-Royce plc. for sponsoring this work
and granting permission for publication.

References

1. Hang Si, K. Gartner. 3D Boundary Recovery by Constrained Delaunay Tetra-
hedralization(2011). Int.J.Nume.Meth.Eng. 85,1341-1364.

2. http://tetgen.berlios.de/
3. http://www.cs.cmu.edu/ quake/triangle.html
4. Jonathan Richard Shewchuk. Constrained Delaunay Tetrahedralizations and

Provably Good Boundary Recovery(2002). 11th IMR, pp 193-204.
5. Leonidas J. Guibas, Donald E. Knuth, and M. Sharir. Randomized Incremental

Construction of Delaunay and Vorono Diagrams (1992). Algorithmica 7(4):381-
413.

6. L. Devroye, E. Mucke and B. Zhu. A note on point location in Delaunay trian-
gulations of random points(1998). Algorithmica, 22:477-482.


